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Abstract

Citation patterns in many academic disciplines have displayed a pattern of con-
nections similar to those observed in many other different real-world contexts, such
as links on the world-wide web. The various models that have been proposed to gen-
erate such networks, generically called "preferential attachment models", rely solely
on random link formation and copying and do not take into account rational choice
among authors in an academic community, which would consider the competition for
citations and ensuing professional success. In this paper we construct such a model
with rational agents to understand some aspects of citation patterns and knowledge
diffusion in a specific academic field .. We show that rivalry or competition in citations
might be an obstacle to diffusion, depending on behavioral rules specific to the field.
Increased heterogeneity in the quality of papers reduces this effect. After considering
models with complete information, we analyse models with private information about
quality of one’s own paper and use the framework to consider the interaction of this
process with acquaintance networks and strategic entry. Superimposing the citation
process on an acquaintance network yields patterns different from preferential attach-
ment. Strategic entry leads to cascades of papers. Though we might have ex-ante
efficiency in some equilibria, ex-post efficiency is not guaranteed. Ex post efficiency
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cannot be guaranteed since it is always possible in equilibrium that a good paper “dies”
and a worse one survives, but ex ante efficiency is sometimes attainable.
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Citations and the Diffusion of Knowledge: An Economic Analysis

1 Introduction

The aim of this paper is to model aspects of the process by which rational agents engaged in
research use and cite earlier related work in their field. Citations constitute visible evidence
of the diffusion of ideas and are therefore important in studying the influence or impact of
particular pieces of research. It is also possible to think of citations as directed links in a
network, so the nature of the diffusion of ideas also endogenously generates a network whose
properties can be studied.
It is natural to think of citations in academic research, since the academic enterprise is

one with which we, engaged in it, are intimately familiar. Academic administrators often
ask for citation counts as evidence of the impact of an individual’s research and this might
translate into salary raises or external offers. Being cited by one’s peers also gives us pleasure
and not being cited, when one should have been, is frequently cause for discomfort. Citations
therefore have real consequences for an academic’s utility.
We can also think of citations of patents in industrial research and development in a

similar way. An individual firm might have a project that could be facilitated by using
someone else’s idea. The firm could choose, however, to try to avoid having to pay royalty
fees for using the patent and develop its own original solution to its problem. Such a new
product or process could itself generate fees from future entrants to the field.
We shall focus on academics for convenience, though sometimes keeping the industrial

R&D context in mind could help motivate some of the assumptions.
As stated earlier, we shall not consider every aspect of the decision on whether to cite

a preceding paper. In particular, we abstract from issues relating to repeated interactions,
where reciprocity could play an important role. The basic tradeoff that we shall examine is
that between investigating and using an existing good idea to simplify one’s own task versus
expending costly effort to come up with one’s own solution to generate high future payoffs
from others with similar projects.
The context we wish to model might be thought of as a research field progressing by the

solution of many related small problems. The person who solves one of these problems puts
in effort and gets an expected value commensurate with the effort put in from her proposed
solution to the problem. However, if other papers are known to exist in related areas, an
individual might read one or more of them to obtain ideas that would simplify her task
thereby reducing the cost of effort and increasing the value of the solution to her. Any ideas
from other papers so used would need to be cited. (This is an assumption, but probably a
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good one for the vast majority of researchers; it is certainly something that firms engaged in
R&D have to do, to avoid lawsuits) However, by citing a related paper, the individual who
cites signals to other future entrants that the cited paper has proved useful and therefore
directs other researchers to it rather than the academic’s own work, whose usefulness to
future entrants is uncertain. Note that in much of this paper, we assume that there is perfect
information about who has done relevant work, though whether the relevant work is useful is
unknown before someone investigates it. Survey papers and textbooks often garner citations
because they themselves cite large numbers of other papers and books and serve to dispel
lack of information about earlier research. With perfect information, this motive for citing
(or for writing textbooks) is absent.
There appear to be relatively few papers dealing with the endogenous formation of cita-

tion networks. One exception is the paper byMikhail V. Simkin and Vwani P. Roychowdhury
([23]), which relies on random copying of citations in previous papers.1In this model, an au-
thor randomly chooses some previous paper that appears related and randomly copies some
proportion of the references in that paper. The randomness generates increasing returns; the
more one is cited the more often one will be cited. However, here the number of citations of
a paper is independent of that paper’s characteristics, which appears to suggest that admin-
istrators counting citations are irrational. In the R&D context, random citation could lead
to a high volume of lawsuits for patent infringement, though Simkin and RoyChowdhury do
not intend their paper to apply to this.
As a contrast to our view of the sequence of related small research problems as constitut-

ing a field, the paper by Paul David [10] considers different scientists pondering the truth or
falsity of some major proposition or theory. They become aware of the opinions of individu-
als they are connected to; since these opinions contain information, Bayesian updating leads
to their adopting the opinions of the majority in their neighbourhood; the neighbourhood
structure is given. The ultimate disposition of the theory is then found by using techniques
from probability theory, namely the voter model discussed in Rick T. Durrett (1988). An in-
dividual cites the opinions of others in his neighbourhood as justification for his own opinion.
This explanation has something in common with lawyers citing precedent and case law to
justify a particular argument. One can interpret the neighbourhood here as coming from a
social network. In a later section, we consider the interaction between the process we model
and the existing social network to see how the latter constrains the former in situations where
information about past work flows only through the social network (as in David’s model).
Citation patterns have been used in empirical exploration of academic research commu-

1[9] has a sentence suggesting copying of citations might be rational: “Signalling by third parties: The
latter, when deciding whom or what to cite, may be concerned to demonstrate that they are conversant with
the reputational ranking of people in a specific area of science.”
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nities in physics by Sidney Redner([21]); C. Lee Giles and Isaac G. Councill ([14]) have used
acknowledgements to trace a similar network of influence. These various networks display
some form of a "power law" structure in aggregate; that is, the degrees of nodes in the
network follow a power law distribution with a small number of highly connected nodes2

One early empirical discussion of citations is contained in Derek S. Price [20]. He looked
at the patterns from 1862 to 1961 across many fields and did extensive analysis of the
empirical regularities of the network of scientific papers. Price calculated that on average
there were seven new papers a year for every hundred papers in that field, and each new
paper contained about fifteen references. Therefore, on average, each paper is cited once per
year. However,he found that in any given year, about 35% of existing papers are not cited at
all and 49% are cited only once. Of the others, the percentage of papers cited n times falls
off rapidly with n (in the order of n2.5). The data appears to fit the hypothesis, according to
Price, that about 10 percent of existing papers “die” each year. Also citations for a paper
tend to occur in “capricious bursts”.
The findings of Price regarding the rapidly decreasing proportion of papers with higher

citations has the same flavour as the “power law” mentioned earlier. The models constructed
to generate networks following such a power law, such as the preferential attachment models
of Albert-Laszlo Barabasi and Reka Albert ([4]) and Bela Bollobas and Oliver Riordan ([5]),
all rely on some exogenously specified process by which links are formed in the network.
In these models new nodes are born each period and each of them links with a existing one

randomly but with a probability that is proportional to the number of links the node already
has. This results in a well-defined stochastic process and we can calculate the properties of
the network generated. Here, the older nodes would tend to have more links than newer
ones and the process implies that there is a tendency of cumulation, which is similar to the
observed cumulation of citations to a small set of papers.
In our model we will try to address the ‘why’ of the preferential attachment model in the

specific context of academic citations by pinning down the possible economic motivations at
work.3

Our paper also relates to the literature of the spread of technology and information
among agents in a community.4The results we obtain illustrate the effects of competition

2The “power law” states that the probability that a randomly selected node in a network has r links is
r−γ . The parameter γ has been estimated to be between 2 and 4.1 for different networks such as the web or
the network of citations.

3The nature of citations bears some resemblance to that discussion of “cumulative advantage” presented
by Robert K. Merton in the ‘Matthew effect’ papers. Small (2004) makes this connection clear-“When
a paper is cited, other authors can see that it is and this heightens their interest in the paper and their
likelihood of citing it as well at some later date. In this sense, citation acts like an expert referral.”

4See [11] for economic models of such social dynamics and [6] for a discussion of social learning.
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and strategic considerations on the diffusion of useful ideas. For efficient dissemination of
ideas, existing papers should be investigated immediately to see if they have ideas that are
broadly useful. To the extent that competition delays such investigation, it creates some
inefficiency. In some variants of our model, such inefficiency occurs. We briefly summarize
the qualitative features of our results below.
In the model with complete information we find an irreducible multiplicity of equilibria.

However, the multiplicity is caused by different agents using different rules to identify past
papers to investigate. If all agents use the same rule, corresponding to norms in different
fields,5we obtain a single equilibrium for each rule. The different rules have different implica-
tions for how efficiently knowledge diffuses and give rise to different patterns of investigation
and citation. In particular, the norm that specifies citing only the most recent paper in an
area leads to inefficient delay and the pattern of the expected number of citations oscillates
with the age of a paper, whilst for the other norms, earlier entrants (the pioneers) should
expect to be cited more often. These results are with a finite number of entrants. With
an infinite horizon, the unique stationary mixed strategy equilibrium does not display the
oscillating pattern
We then assume each agent has a better idea about the usefulness of her own paper

than other agents. The private information leads to a combination of behavioural norms-
randomising among uncited individuals initially and then choosing the most recent previous
entrant.
We then consider strategic entry if the agents all have their ideas simultaneously. We find

there exists a “signalling” equilibrium, in which earlier entry implies higher average quality.
Once entry occurs, there is a cascade of related papers.
Finally, we constrain the directed citation graph by an undirected acquaintance network.

Now we relax the assumption that the existence of all previous papers is known and assume
instead that one learns about papers that acquaintances have written or ones they have
cited.6This gives rise to the closest analogue in our paper to the preferential attachment
models. The probability a paper is cited then depends on two factors, one (the number of
previous citations) arising from the (superposed) network structure and the other (which is
a probability itself and hence less than 1) arising from the strategic incentives of players.
The process is sublinear and therefore does not give a power law (see Fan Chung, Shirin
Handjani and Doug Jungreis (2003)).
We make several strong assumptions in our model, though it is not clear that relaxing

them would give any new insights. The two strongest ones are: (i) Once a previous piece
of work is found useful by someone, it will be found useful by everyone following and if it

5hese are: citing the most recent paper or the oldest one or citing all available papers with equal probability
6This does not seem that far-fetched though whether reciprocity is at play here is hard to tell.
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is not useful, it remains not useful; (ii) Only one citation is allowed per new paper. We
discuss relaxing the first in the extensions section (section 7). The second implicitly takes
into account the time spent in investigating past work or past patents. One could think of it
as choosing to refer to one directly useful paper and referring to survey articles or textbooks
for the others.
The rest of the paper is organized as follows. In Section 2 we describe the basic model

while Section 3 deals with the analysis.In section 4 we introduce a model with private in-
formation about types. In Section 5 we discuss strategic entry decisions. Section 6 deals
with social networks. Section 7 concludes with discussions on possible efficiency issues and
on introducing heterogeneous quality . All detailed proofs are relegated to the appendices.

2 The benchmark model: single entrant per period
and two qualities

The set of players is denoted by N={1,2,...k,...,n}. Players are ex ante identical. In each
period, one player enters; the order of entry is predetermined. We shall denote by Player
k the individual who enters and writes a paper in period k. Agent k can write on his own
or use some existing paper, 1,2,...k − 1 before publishing (or “entering”). A paper k can be
"useful" or "not useful"7. If useful, the paper gives a value8 v > 0 to any player k + 1, ...N
who cites it. The payoff to the paper being cited is w for each citation it gets. We assume
v > w. If not useful, the value is 0 and the paper is not cited. The prior probability that any
paper k is useful is p0.Paper k being useful is independent of the usefulness of the sequence
of papers 1, 2...k − 1. Any entrant first observes the state of citations Cik, the number of
citations received by paper i till period k. We assume Cik ≥ 1,that is, writing a paper is,
by convention, a citation. Any paper with Cik ≥ 2 is revealed to be useful. After entry
each agent updates his beliefs about each agent/paper. Then he decides whether to incur
cost c to Investigate(read) some j = {1, 2, ..., k − 1} or not to investigate at all (NI). We
assume p0v > c. If investigated, it is revealed whether j0s paper is useful or not. If useful,
agent k decides whether to use (and cite) it or not. At the time agent k enters, he observes
the identities of all previous entrants and the citations each has, including the virtual self-
citation. But k does not observe the actions prior entrants have taken with respect to reading
or not reading previous papers. Therefore k is unable to distinguish between the histories
where Player i (1 < i < k) chooses NI and where she chooses I but does not cite (because,
perhaps, the investigated paper was not useful). By choosing to cite(use the paper of a

7This simplification is made for analytical tractability-clearly papers can be useful to different degrees.
8This could be interpreted as the additional value obtained from a useful paper.
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Figure 1: Original game

previous agent) agent k gets an immediate payoff of v and some future payoff depending on
whether he is ever cited, which again depends on the state Ck+1 at t = k + 1. By choosing
NI or not cite, even after Investigation, he has to write on his own and gets a lower current
payoff, which is normalised to 0, and an expected payoff depending on the state next period.
After k0s decision, the next agent enters, observes state Ci,k+1 and takes decisions as specified
in the previous steps. All agents have the same discount factor δ ∈ (0, 1).
We can represent the actions of any player i in a schematic tree(Fig 1) where Ai is the

expected future benefit from not citing any previous player.
Note that after the uncertainty is resolved, the paper either gives a payoff of v or 0. As

long as the cost of reading c is positive, an agent i would always use( cite) j0s paper if he
found it useful after reading (otherwise it would have been optimal not to read it). Also, if
not useful i has no choice but to write on his own as if he had not read any other paper in
the first place. So, this game can be reduced to an equivalent game, represented by Fig 2.
Note that both the nodes t2 and t3 involve no citation and are in the same information

set. Hence, if the equilibrium strategy of i is to I and he deviates, then i + 1 observes no
citation and believes that i is at node t2, when he is actually at t3 and so not all deviations
are detected.
Let us now consider the assumptions made in the specification of the model. The payoff

v can be interpreted as a private benefit an agent gets from writing a paper. The payoff from
a paper when it uses another’s idea (v) is higher than when it is written solely by the agent,
due to the fact that the agent writing a paper entirely on his own has to put in a much
higher effort to achieve the same quality than when he is supplementing his idea with that
of another agent. Hence the net benefit of writing a paper(not taking the cost into account)
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Figure 2: Reduced game

is lower if the agent writes by himself. The payoff w is the benefit from the fame and other
associated consequences an agent gets from being cited.
The assumption made for analytical tractability is that a paper is either always useful

(high quality) or never useful (low quality). First, note that the evolution of the probabilities
is now very simple. Following one success of an investigation, the paper will be revealed to
be of high quality and belief about its usefulness goes up from p0 to 1. On the other hand,
one failure does the opposite. If it is known that a paper was investigated but not cited, it
is revealed that the paper is of low quality and it is never investigated again by any agent
i.e. ps = 1 and pf = 0. In other words, we have perfect signals regarding the quality of the
papers investigated. As for papers not investigated, the belief remains at the prior p0.9

9In the basic model, the probability that a paper is useful in any one instance, given it is of high quality,
is given by h and, given it is of low quality is given by l. For the sake of tractability we took h = 1, l = 0,
which implied that once a paper is found useful (or not useful), it remains so for all future readers. If we
relax one of the equalities then the tradeoff remains the same. For example, if l = 0, h < 1 then one citation
of a paper would reveal that it is of high quality as in the basic model. A non-citation however does not
reveal for sure that it will never be useful but the probability of its usefulness goes below the prior. Hence
an agent would not investigate that paper. Similarly, for l > 0, h = 1 one non-citation reveals that it must
be a low-quality paper and the probability of it being useful later is less than the prior whereas a citation
increases the proabability of another sucess for that paper.
For general h and l, i.e. h > l > 0, we would get a non-degenerate distribution of citations. Bayesian

updating would then imply that the prior p0 goes up following one success but not to 1. Generally, it
is increasing in the number of successes and decreasing in failures. For a given (h, l), agents follow the
Bayesian updating rule and there will be a certain number of failures, xf , of a paper after which the belief
about its usefulness goes below p0. So, we might observe patterns of the following sort: a paper is investigated
for the first time and if it is a failure the belief goes below p0 and it is not chosen again. If it is a success
it gets a citation, the belief increases to p1 > p0 and it is chosen again. This second investigation might be
a failure and hence the belief goes down to p2 < p1. However, p2 might still be greater than p0, in which
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The trade-off involved here is between investigation of some j0s paper with potential cur-
rent benefit v associated with lower future benefit (because by citing the agent i is signalling
that j0s idea is useful) or no investigation (and hence no citation for sure), which has lower
current payoff but a higher expected future payoff (since i does not give anything away about
j). We want to focus on the equilibrium pattern of investigation and citation.
We also assume a version of private uncertainty in the basic model in that a particular

agent does not know the quality of his own paper, that is, his belief about the probability
that his paper would be useful to somebody is also p0. This is sometimes reasonable in the
context of academic papers since the quality of a paper is determined by the judgement of
one’s peers. Also, this implies that no agent knows his own type (high or low), which helps
us to abstract initially from signalling motives.10

2.1 Strategies, Payoffs and Equilibrium

We define strategies for the N players and the equilibrium of the game.
Strategies: Let the set of information sets where agent k has to move be ISk and let z be

an element of ISk.A strategy sk for the agent k is his choice of an element from the set Sk =
{NI/I0, I1, I2, ..., Ik−1} at each z, given his entire set of beliefs µk = (µ1, µ2, ...µk−1) about
the probability of usefulness of all earlier entrants at each z.Thus a strategy sk = {(Izi )}Zz=1,
where |ISk| = Z and i = 0, 1, ..., k − 1.
Agents choose their strategies to maximize their expected payoffs, where the expectation

is with respect to the beliefs µ.
Equilibrium: A Perfect Bayes Equilibrium is a N-tuple of strategies for all N players

< s∗1, s
∗
2, ...s

∗
N > such that s∗k is a best response to s∗−k at every information set of Player

k,given beliefs µ,which are derived from the prior p0 and the history of play using Bayes’
theorem, wherever possible.
To derive the beliefs, note that, at any history ht which has a citation other than a

self-citation, it is revealed that the paper was investigated and is of high quality and will
guarantee v if investigated. All papers with any citation will have this feature. Other papers

case, it is chosen again. Consecutive failures will take the belief below p0. Once that happens this paper
would not be chosen again and papers whose quality is at the prior level will be chosen and the same process
followed. Hence, we might observe a group of papers with more than one citation, though the second paper
was chosen only when the first cited paper had enough consecutive failures. In fact, we can also make h and l
dependent on the number of citations of a paper. For example, when a paper has been used and cited say m
times, the probability that there is anything useful remaining in it decreases, which implies that both h and
l are decreasing in the number of citations a paper gets. This will also result in a distribution of citations
instead of a spike for only one paper .
10We do discuss possible effects of signalling in Sections 5-8
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without any citation can belong to one of the two groups: a) the paper has been investigated
but not found useful, in which case p = 0 for sure; or b)the paper has not been investigated
in which case the ex-ante probability of it yielding v is p0 < 1. So, if an agent wants to
choose I at any node, he will choose the paper with a citation since the expected payoff
from so choosing is the highest. It follows that once there is a revelation of a high quality
paper k at time t, that paper will be investigated (and cited) by all agents from time t+ 1.
This is true since the person investigating paper k at time t, must have done so because the
expected payoff from investigation is more than that from not investigating a paper with
usefulness probability p0. Given this, investigation of a surely high-quality paper must have
a higher expected payoff for agent t+1 onwards. Moreover, once a paper is cited, any paper
without a citation (including the current entrant’s) ceases to be competitive and the trade-
off disappears. So, for any history with a citation of paper k0, the equilibrium strategies of
subsequent entrants will be investigation of paper k0 and consequent citation for all periods
hence. The trade-off between present and future benefits mentioned is relevant only after a
history with no citations.
Let h0t denote any history with no successes (or equivalently citations). We have to

specify equilibrium strategies ( NI or Ik) for each agent k after such a history h0t.We define
an equilibrium string for this purpose.
An Equilibrium String is a N-dimensional array where the kth element is the equilib-

rium decision of the kth agent from set Sk after a history of no citations. Since the trade-off
between current and future benefits kicks in at these histories, we have to figure out what
the equilibrium string is, which along with the decision s0k = Ij whenever ∃j with Cj > 1
and the belief µ, will be the Perfect Bayesian Equilibrium.
To completely specify the equilibrium we have to specify the belief µik each agent k

has about i, i = 1, 2, ...k − 1. On the equilibrium path, µ is derived by Bayesian updating.
Information regarding the paper is revealed following one citation and µik(ci > 1) = 1 while
µik(Ci = 1) = p0 if i was investigated with probability 0 in equilibrium. If i was investigated
with some positive probability r in equilibrium, then µik(Ci = 1) = (1− r)p0 < p0. Histories
off the equilibrium path involve deviations that are revealed to be such. If some i deviates
from Ij to NI , this is not observable by k > i.If instead, i deviated from NI to citing some j
not cited before, then this deviation might be observed if j is useful. The out-of-equilibrium
belief here can naturally be set at µj = 1. If the deviation is not revealed to k > i then
µkj(Cj = 1) remains at p0 (this is on the equilibrium path).
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3 Equilibrium Analysis

We first give a trivial lemma for the updated priors.

Lemma 1 If some previous agent is investigated with positive probability, then in states of
no citation, the belief regarding his usefulness is less than the prior p0.

After history ht with some Cjt > 1, the equilibrium behaviour is also trivial and given
by:

Lemma 2 After any history ht with Cjt > 1 for some j = 1, 2...t, agent t + 1 chooses to
Investigate j∗ = argmaxCjt in equilibrium.

Proof. We prove this by backward induction. Suppose at time t, agent t enters and observes
Ci > 1(wlog).Consider the last agent, N. He chooses to investigate bj = argmax Cj, j < N,
since he only cares about the current benefit. Now, suppose agents τ , τ + 1, ..., N follow
this strategy. We need to show Player τ − 1 also follows this strategy. (Note:If there is a
Cj > 1, j < τ, then argmax Cj, j < τ is same as argmax Cj, j < τ − 1, since no agent except
agent τ can cite τ − 1, so this player cannot have more than a self-citation). He knows that
τ will choose bj and hence, the expected future benefit of τ − 1 is 0. Given some Cbj > 1,

τ − 1 obtains a payoff v − c from investigating bj, p0v − c from investigating j with Cj = 1
and 0 from not investigating. If there are multiple j with Cj > 1, τ − 1 chooses one of them
randomly. (This last case is off the equilibrium path.) Thus the hypothesis holds for all t.
Given the preceding lemmas, we will now focus on characterizing the equilibrium decisions

of agents after observing history h
0
t ( i.e. with Cj = 1,∀j ≤ t). Before the characterization

of an equilibrium string, we give some examples for purposes of exposition. Let the total
number of agents be N=6. Throughout we follow a common tie-breaking rule: If an agent
is indifferent between I and NI, he chooses to investigate.

Example 1 The equilibrium string is [NI, NI, I2, I1, I3 , I4 ] for some parameter values.
To see whether this can be an equilibrium for some parameter values, we have to check

whether all six no-deviation conditions can be satisfied simultaneously. Note that 1 gets future
payoff only when 3’s investigation of 2 is a failure, which has a probability of 1− p0 and 4’s
subsequent investigation of 1 is useful (probability p0). The condition for 1 is irrelevant here
since he has no choice effectively. His future payoff is always higher than the current one
which is 0.

0 < (1− p0)p0(δ
3w + δ4w + δ5w) = (1− p0)p0δ

3w(1 + δ + δ2)

12



The condition for 2 however is that the current net payoff be lower than the expected future
payoff i.e.

v − c

p0
< p0δw(1 + δ + δ2 + δ3)

Now if 3 deviates, no citation is observed for 2. Hence no future player would investigate
2, but 4 investigates 1. 3 would be investigated by 5 only if 4’s investigation is not useful(
probability 1 − p0). So, 3’s expected future payoff from deviating is (1 − p0)p0δ

2w(1 + δ) =
Q(say) while his payoff from investigating is p0v + (1− p0)Q− c. the condition needed for 3
not to deviate from I2 is

v − c

p0
≥ (1− p0)p0δ

2w(1 + δ)

For 4, the condition is
v − c

p0
≥ (1− p0)p0δ

2w

while for 5 and 6 it is simply v − c
p0

> 0.
So, the parameter values needed to sustain the specified equilibrium string should satisfy

L0 = (1− p0)p0δ
2w(1 + δ) ≤ v − c

p0
< (1− p0)p0δ

3w(1 + δ + δ2) = H 0 (1)

We see this is possible for δ high enough.

Example 2 Now let us consider the equilibrium string [NI, I1, NI, I3, I4, I5]. We will check
if there exists some values of parameters such that no one deviates from this equilibrium.
Conditions needed for this to be an equilibrium are:
1: 0 < p0δw(1 + δ + δ2 + δ3 + δ4)
2: v − c

p0
≥ 0

3: v − c
p0

< p0δw(1 + δ + δ2)

4: v − c
p0
≥ p0δw(1 + δ)

5: v − c
p0
≥ p0δw

6: v − c
p0
≥ 0

Hence the condition needed is

L = p0δw(1 + δ) ≤ v − c

p0
< p0δw(1 + δ + δ2) = H (2)

So we see from these two examples that both the strings can be equilibrium strings
depending on whether the values of parameters satisfy the respective conditions. Now we
can in fact show that the two ranges of v− c

p0
: [L,H] and [L’,H’] may not be disjoint. If they
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are not, then given that parameters satisfy (1), we cannot be sure that the string is as in
Example 1. So, for some parameter ranges, both (1) and (2) might be satisfied and hence
there can be multiple equilibria.
Hence we see that there is an irreducible multiplicity of equilibria, pure as well as mixed

and we cannot make any precise predictions regarding the pattern of investigations by agents.
Note that, crucial to this multiplicity is the behaviour of agents when indifferent between
investigating two or more agents. However, if we impose some rules (corresponding perhaps
to social norms in the fields concerned-see the next subsection) on how agents behave if they
are indifferent, we can obtain partial characterisations of equilibrium behaviour. We now
turn to these.

3.1 Behavioural Assumptions

In case some entrant is indifferent investigating among a set of agents, he can choose any
one or mix between them. We impose some simple behavioural rules in these cases. Suppose
entrant k is indifferent between agents 1, 2, ...k− 3. Some of the simpler rules could be (1) k
chooses the earliest i.e. 1 to investigate or (2) k chooses the most recent agent i.e. k − 3 or
(3) he mixes between all of them with equal probability. Hence we focus on two types of pure
strategies and one completely mixed strategy. These could be thought of as extreme cases
of some regularities observed in practice. Price [20] observed that different subjects can be
categorised into two classes: classical or ephemeral. Subjects like Physics and Engineering
are ephemeral i.e. recent papers tend to be cited more often while Geology, Mathematics are
classical ; they cite more of the older papers. Some subjects, however, show no clear trend.
We take our cue from these observations and analyse the game with these three behavioural
assumptions.
Any new entrant:
BA1: If indifferent among r agents, investigates the earliest among them.
BA2: If indifferent among r agents, investigates the most recent agent.
BA3: If indifferent, mixes among all r agents with equal probability.
Now, we focus on each of these at a time and characterise the equilibrium string corre-

sponding to each. The proofs are relegated to the Appendix.
Behavioural Assumption 1: Any new entrant, if indifferent between r agents, inves-

tigates the earliest among them.

Proposition 1 In any equilibrium string, for N > 4, ∃K∗ ≤ N−4
2

s.t.∀k ≤ K∗,the kth entry
is NI and ∀k > K∗, the kth entry is I. The exact value of K∗ depends on the parameter values
v, δ, p0, w.
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Proof. The proof involves 2 steps. Step 1 shows that number of agents choosing NI is less
than that choosing I, in equilibrium. This is because we consider pure strategies i.e. k agents
investigating implies exactly k agents are investigated. So, no more than k agents would
like to choose NI in order to be investigated. In fact, it can be shown that number of agents
choosing NI is less than N−4

2
, given our assumptions on parameters.

The next step involves showing that there will be no gaps. Suppose an agent i finds it
profitable to choose NI and let his payoff from doing so be Ui. Then the agent j preceding
him must also find it profitable to choose NI since Uj > Ui. This increase is due to two
things: one, i will be investigated later than j conditional on j being not useful and hence
the unconditional payoff is lower; second, conditional on being useful, j would get one extra
citation than i would potentially get on account of being an earlier entrant. Hence j would
also choose NI and so would any agent entering before i.(See Appendix 1 for details)

Remark 1 This implies that there will be no gaps in equilibrium. That is, if, say, agent 5
is the first one to investigate and his investigation is not useful so that agent 6 observes no
citations, then in equilibrium, it cannot be that agent 6 chooses NI and writes on his own.
K∗ is the entrant who first starts investigating in equilibrium. i.e. the first player for whom
the expected current benefit outweighs the prospect of future benefits from being cited. This
agent is ready to forgo possible payoffs of w from each future citer to get the current benefit v.
Players before him, i.e. those who choose to write on their own, do not want to investigate
some earlier agent and cite him, since in that case, they would never be cited.

Remark 2 Also, K∗ ≤ N−4
2
implies that the total number of agents not investigating is

strictly less than those investigating, in equilibrium. The number of citations though would
depend on the outcome of those investigations and is bounded above by the number of agents
investigating. The exact value of agent K∗ depends on the parameter values. For given
w, p0, δ the higher the v the higher the incentive for earlier players to Investigate and not
wait, since the future payoff relative to v is not high enough. So, higher the v, the lower the
K∗ i.e. investigations start earlier.

Behavioural Assumption 2: Any new entrant, if indifferent between r agents, inves-
tigates the most recent among them.

Proposition 2 In any equilibrium string, ∃K, s.t.∀i ≤ K,∀j ≤ K − 1, i: NI ⇒ i + 1 : I
and j : I ⇒ j+1 : NI and ∀i > K, i : I .The value of K depends on parameter values and,
for fixed w, p0,δ, is decreasing in v.
Proof. First note that two consecutive NI is not an equilibrium since the earlier agent will
not be investigated and hence would deviate to I. So, a NI must be followed by a I. Also, two
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consecutive Is preceded and followed by NIs cannot be an equilibrium either. Suppose i, i+1
chooses I and agents i − 1 and i + 2 choose NI.In this case, agent i finds it profitable to
investigate which implies that Ui(I) > Ui(NI). Now for agent i + 2, Ui+2(NI) < Ui(NI)
since there are less number of agents entering after him.Since utility from investigating is
same for all player and equal to v− c

p0
, given agent i is choosing optimally, agent i+2 should

deviate since Ui+2(NI) < Ui(NI) < Ui(I). Ruling out these patterns leaves the specified
pattern as an equilibrium depending on parameter values. (Appendix 1 for details)

Behavioural Assumption 3: Any new entrant, if indifferent between r agents, inves-
tigates them with equal probability 1

r
.

Proposition 3 In any equilibrium string, ∃ eK ≤ 2, s.t.∀k < eK the kth entry is NI and
∀k ≥ eK, the kth entry is I . In fact, eK = 2.

Proof. Note that if i, i + 1 chooses I and i − 1 chooses NI, then only i mixes (by Lemma
1).
Let the ith1 , i

th
2 , ....i

th
k , i

th
k+1, i

th
k+2, ...N

th agents be the ones choosing I in equilibrium; i1 <
i2 < .. < ik.Hence ik is the agent after which there is no agent choosing NI in equilibrium
and i1 is the first agent to choose I. From the conditions for no unilateral deviation by agents
ik and ik − 1 , the parameters should satisfy the following condition:

p0wδ(1 + δ + ...+ δN−ik−1) ≤ v − c

p0
<

1

ik − ik−1
p0wδ(1 + δ + ...δN−ik)

the necessary condition for this to hold is

or, (1 + δ + ...+ δN−ik−1)(ik − ik−1) < (1 + δ + ...δN−ik)

which can hold only if ik− ik−1 = 1. Hence everyone after ik−1 investigates. We can rede-
fine ik now and do the same exercise which implies that there can be no gaps in equilibrium.
Next we can show that the number of NIs, in fact, cannot be more than 2. (See

Appendix 1 for details).

Remark 3 In this case we see that investigations start very early, as implied by the value
of eK. Whatever be the value of v relative to the other parameters, only the first entrant
waits(since he has no choice) and investigation starts from the second agent. This equilibrium
entails the maximum number of investigations and expected citations.The intuition behind
the early investigations is that by the strategy of randomising among agents when indifferent,
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each early entrant, say t faces elimination from the race even when some other agent is
investigated. If the investigated agent’s idea was useful, then t will obviously get no future
citations. But even when the idea is not useful, the new entrant would not investigate t since
the probability that t was investigated is positive. This significantly reduces incentives to
write on one’s own and try to get future citations-payoffs resulting in investigation starting
early in the process.

Now, we can compare these different equilibria in terms of when investigations start.
BA3 obviously involves early investigations. We can compare K∗ and K for given parameter
values and this will tell us which type of behaviour entails early investigations and hence
early revelation of a high-quality (always useful) paper . We can show that for any set of
parameter values, BA1 induces earlier revelation of the quality of papers compared to BA2.
i.e. eK ≤ K∗ < K for any given parameters.

Proposition 4 For any given set of parameters, (v, p0, w, δ), eK ≤ K∗ < K.

Proof. To show this we need to fixK∗ at a particular value, say Y. This corresponds to some
range of parameter values, set υ, say. Now each K corresponds to some set of parameter
values, say ω. For a K ≤ K∗, call the set ωl. We can show that ωl does not intersect υ.
Hence, given K∗ = Y i.e. given that parameters lie in υ, they cannot belong to ωl which
implies that K £ K∗.(See Appendix 1 for details).
Following the characteristics of the equilibria outlined in this section, we plot the expected

discounted number of citations for each entrant under the different behavioural assumptions.
The parameter values for Fig 3 are δ = 0.99, N = 20, p0 = 0.5 and v, w, c such that K∗ =
4,K = 7.

3.2 The infinite horizon model

In the previous section we considered a finite number of agents making decisions of investi-
gating and citing. One natural question that arises is what happens when there is no known
bound on the number of agents. In this section, we modify the basic model by considering
an infinite horizon game where one agent enters in each period. The rest of the game is
as before. After entry an agent observes the state of citations for the existing agents and
updates his priors regarding the usefulness of a paper. Then he decides whether or not to
investigate one of the existing papers. We will focus on the stationary equilibria of this game
where the strategy depends only on the citations observed.
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Figure 3: Expected number of citations

To characterize the equilibrium stationary strategy, one needs to define the history at any
time t, ht. At any time t, there could be two types of histories: (i) h1t = ht(Cτ > 1, for some
τ < t) or (ii) h2t = ht(Cτ = 1,∀τ < t), i.e. a history with one or more citations or one with
no citations (apart from self-citations). The stationary strategy of agent t can be denoted by
st = {s1t , s2t} = {s(h1t ), s(h2t )}. The next proposition characterizes the equilibrium stationary
strategy, s∗.

Proposition 5 The unique stationary equilibrium is (i) s∗ = {I, I} for all t if p0δw
1−δ < v− c

p0

and (ii) s∗ = {I, σ(λ)} if p0δw
1−δ > v − c

p0
where σ(λ) denotes the mixed strategy with λ being

the probability of investigating.

Proof. The proof proceeds by first characterizing the equilibrium strategy for ht = h1t . From
the previous analysis it is obvious that s∗(h1t ) = I. Next, note that s∗(h2t ) 6= NI. Suppose it
is. Therefore, when agent t observes no citation, then he chooses NI. This in turn implies
that ht+1 = h2t+1 and since s

∗(h2) = NI, agent t + 1 chooses NI. Hence, agent t has no
current or future payoff and is better off deviating to investigating some τ < t and getting
an expected payoff of at least p0v − c > 0.
The next claim is that s∗(h2) = I is an equilibrium for some parameter values. Note that

the given equilibrium strategy implies that agent 2 investigates 1, 3 investigates 2 at history
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h2 and so on. This also implies that at history h2t agent t knows that the investigations
of agents 2 through t− 1 have been unsuccessful and hence the probability of usefulness of
agents 1 through t−2 is zero. Hence agent t would investigate agent t−1. Note that this also
implies that in the event that t+ 1 faces history h2t+2, he will investigate agent t. Therefore,
the expected payoff of t from I can be written as

Eπt(I) = p0v − c+ (1− p0)p0(δw + δ2w + ......)

= p0v + (1− p0)
p0δw

1− δ
− c

If t deviates to NI, he gets

p0(δw + δ2w + ......)

=
p0δw

1− δ

So, if v − c
p0

> p0δw
1−δ , then agent t chooses I. Hence for this set of parameter values

the unique stationary equilibrium is to investigate the immediately preceding entrant with
probability 1.
If v− c

p0
≤ p0δw

1−δ , then the pure strategy s
∗ = {I, I} is not an equilibrium. Let the mixed

strategy σ be the following: When ht = h2t , investigate the previous entrant with probability
λ and choose NI with probability 1−λ. For σ to be an equilibrium it must be the case that

Eπt(I) = Eπt(NI)

or

p0v − c+ (1− p0)λp0w(δ + δ2 + ....) = λp0w(δ + δ2 + ...)

This holds for λ = 1−δ
p0wδ

[v − c
p0
] ∈ (0, 1) for v − c

p0
≤ p0δw

1−δ .
Thus, each agent would choose to investigate with some probability λ until the first time

the investigation is successful, after which everyone would cite the successful paper. Thus
there would be a probabilistic “monopoly”with the ex ante probability that the tth entrant
is the monopolist being (1− λp0)

t−2λpo.

4 Private Information

In this section we consider the case where each player receives a private signal about the
‘quality’ of his paper before taking any decision11. We represent this signal as an agent-
specific probability of success and denote it by pi for the ith agent with E(pi) = p0. Let
11Baliga and Sjostrom ([2]) design a mechanism for self-assessment and peer review (in a different context)

based on a similar assumption.
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the distribution of pi be denoted by F (.) and let pi be i.i.d across agents. Now, consider the
basic model with one entrant each period; if useful a paper yields the same value v. The
cost of investigation is c, as before. Let rt+1 be the probability of agent i + 1 (entering at
t+ 1) investigating any of his predecessor( which can be anything ∈ [0, 1]). The ith agent’s
decision between investigating and not at any time will depend on his type.
At any time t, he can choose one of the two and get the corresponding payoff.
Investigate: p0v+(1− p0)δpirt+1Wt+1− c where Wt+1 = (w+ δw+ ...+ δN−i−1w), which

represents future payoffs from being cited.
Not Investigate: δpirt+1Wt+1

Therefore NI is chosen when

p0v + (1− p0)δpirt+1Wt+1 − c < δpirt+1Wt+1

or, v − c

p0
< δpirt+1Wt+1

or, pi >
v − c

p0

δrt+1Wt+1
= p∗t . (10)

Then the probability that i investigates a predecessor is F (p∗t ) = rt.Hence for every period
there is some cutoff type p∗t such that all pi < p∗t entering at time t will investigate some
predecessor.
Let the cutoff levels of the types for each period be represented by p∗ = (p∗1, p

∗
2, ....p

∗
N−1, p

∗
N).

This sequence also defines the sequence of r∗0s by the relation F (p∗t ) = rt ∀t.If there are N
time periods ( or equivalently, N entrants), rN = 1. Likewise, depending on the values of
v, w, po, δ, c, all entrants from some k + 1 ≤ N onwards will investigate with probability 1,
and k is the last time period for which rk < 1. The rest of the sequence is defined recursively

by
v− c

p0

δF (p∗t+1)Wt+1
= p∗t .

Now given this sequence we can argue that in equilibrium, if an agent i investigates a
predecessor, it has to be i− 1 whom he investigates. This is a direct consequence of Lemma
1. Conditional on observing no citations, the probability that i− 1 is of type pi is F (pi), so
that ex-ante probability of i−1 being useful is E(pi) = p0. Some agent j < i−1 , on the other
hand has been investigated by some agent pk < p∗j which occurs with positive probability.
Hence by Lemma 1, the probability of agent j being useful < p0. So, if i investigates at all,
he will investigate i− 1. This gives some some justification for the behavioural assumption
2 that we imposed in the main analysis. (Unfortunately, this was the least efficient one.)
One odd feature of this setup is that the sequence of cutoffs alternates in size-a high

probability of citing next period leads to a lower probability today, other things being equal,
and vice versa.
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5 Private Information with Strategic Entry

In this section we further extend the model to include entry as a strategic decision. If agents
know their type and are free to choose when to enter, then we might observe some sorting
regarding timing of entry. Each agent receives a signal about his type pi before the start of
the game. He, agent i, has two decisions to make at every time period t; to ’enter , E’ or
’Wait one period, W’. If he chooses E, he then chooses to I(nvestigate) or NI, as before. If he
chooses W, then at time t+1, he again has the same choices. All agents make these choices
simultaneously. So, the decisions are functions of their types (and of course, the history at
any time t ) only.
Let the distribution of pi be i.i.d uniform [0,1].12Let T be the fixed number of periods

and T > 2.

Proposition 6 Let N,w, v be such that (N − 1)w > v.Then there exists an equilibrium
described by the cutoffs αj, 1 > α1 > α2 > ...αT−1 > 0 with αt = αt

1 such that:

1. If pi ≥ α1, Player i enters in period 1. If there is at least one entrant in period 1, all
other players enter in period 2.

2. If there are no entrants for periods t=1,2,..τ < T − 1, Player i enters if pi ≥ ατ+1.If
there is at least one entrant in any period τ , all other players enter in the following
period.

3. The players who (simultaneously) enter first do not investigate. Those who enter in
the following period investigate.

4. If the first entry occurs at period τ , any player who has not entered by period τ + 1
does so in τ + 2 .

5. In period T , everyone who has not entered, enters.

Proof. Note first that the histories in this game are characterised by the identities of the
players who enter in each period. The state of the game is given by (at, kτ , τ ≤ t) where the
distribution of pi after period t is uniform [0, at] and kτ is the number who have entered at
period τ .We shall limit ourselves to strategies that depend only on the state and not on the
identities of the players who have entered at different periods.The only out-of-equilibrium
moves we need to consider are given by point 4 above. The effect of such moves on beliefs is
irrelevant for the equilibrium strategies.

12This is without much loss of generality and saves on notation.
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Suppose no player has entered by period τ. Then the belief aτ = ατ . The probability that
any player will enter is then γτ+1 =

ατ−ατ+1
ατ

.13 Let mτ+1 := 1− γτ+1. Also, let bpτ+1 be the
highest expected probability (entrants at different times might have different probabilities
of being useful) at time τ + 1 that any of the earlier entrants is useful. Consider Player i in
period τ , conditional on no previous entry. If he enters and k others out of N − 1 enter then
his expected payoff conditional on k is given by:

piδ
N − k − 1
k + 1

w. (11)

Here we are assuming each of the k+1 initial entrants is investigated by the others in the
following period with equal probability (a version of BA3 but possibly the only reasonable
assumption here). If Player i is found useful by anyone of these others who investigates him,
he will be found useful by all the others who also choose him to investigate. This expression
(11) is decreasing in k.
The unconditional expected payoff is therefore:

piδwEk(
N − k − 1
k + 1

| mτ+1).

Since the term to the right of the expectation operator is decreasing in k, the expectation
is decreasing in the probability of entry (by first-order stochastic dominance) and therefore
increasing in mτ+1. If Player i chooses to wait, his expected payoff, by the equilibrium
strategies, is

(mτ+1)
N−1piδ

2wEk(
N − k − 1
k + 1

| mτ+2) + (1−mN−1
τ+1 )δ(bpτ+1v − c), (12)

These last two expressions are equal for pi = ατ+1.Also, by Bayes’ Theorem, mt+1 =
αt+1
αt

.

The conditional probability bpτ+1 = αt+αt+1
2

. The cutoff ατ+1 is defined by the following
equality:

ατ+1δwEk(
N − k − 1
k + 1

| mτ+1) = (mτ+1)
N−1ατ+1δ

2wEk(
N − k − 1
k + 1

| mτ+2)+(1−mN−1
τ+1 )δ(bpτ+1v−c)

If τ = T − 1, i.e. the current period is the last, mT = 0. (All remaining players enter
and everyone gets 0.) Suppose mt is defined for t = T, T − 1, ....τ +2 and suppose the belief
in period τ + 1 is that pi is uniformly distributed between [0,aτ ]. We now show there exists
a ατ+1�(0, 1) such that a player i will enter if and only if pi�[ατ+1, aτ ].

13If τ = 0, i.e. we are referring to the first period, we adopt the convention that α0 = 1.
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Suppose, in the above equation, ατ+1 = 0. Then mτ+1 =
0
aτ
= 0. Also, bpτ+1 = aτ

2
.

The left-hand side of the expression above is 0 and the right-hand side is positive, so the
LHS<RHS. Now put ατ+1 = aτ . Now the LHS is greater than the RHS, (δ < 1 even if
mτ+2 = 1 and stochastic dominance give us this inequality). But both the LHS and the
RHS are continuous in ατ+1. Therefore the LHS=the RHS for some interior value of ατ+1.It
is clear that if pi = ατ+1 is indifferent between entering and waiting, every pi > ατ+1 will
enter
Therefore, in equilibrium, at = αt for all t.14

Example 3 Let the distribution of pi be i.i.d uniform [0,1]. Let T be infinite.Also, let N,w, v
be such that (N − 1)w > v, and let c = 0.Then there exists an equilibrium described by the
cutoffs αj, 1>α1 > α2 > ...αT−1 > 0 with αt = αt

1, which satisfies the conditions of the
previous proposition.15

Proof. This proceeds in the same way as the proof of the proposition except we are able to
show that mt is a constant if c = 0.
Now, we argue that non-monotonic equilibria are not possible.

Proposition 7 There cannot be an equilibrium in which there exist α and α0, α < α0(say),
such that all players with pi > α0 and some with pi < α enter in period 1, while players with
α ≤ pi ≤ α0 enter in period 2 with other players entering after period 2.16

Proof. See Appendix 2.
Note that we have discussed t = 1, 2 and t > 2. There could be equilibria in which no

one moves before some τ > 1. This could be sustained by a belief that anyone who enters
before period τ has pi = 0 with probability 1. This seems an unreasonable belief in that
earlier entrants should have higher probabilities of usefulness, since by being early entrants
they are giving up the advantages of using other people’s work. We assume therefore that
players who enter earlier than τ have probability 1 of being useful. This destroys equilibria
with delay driven by beliefs.
All this is still not sufficient to claim uniqueness because the proof of the existence of the

αt did not claim the sequence was unique.

14We are not claiming the sequence αt is unique.
15That is, once someone enters in a period, everyone else enters in the next period. The infinite horizon is

needed to keep mt constant.
16Using period 1 in the statement is without loss of generality-we can replace it by “period τ such that

there has been no entry up to τ − 1.00
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This result is similar to some results in the endogenous timing literature. Brian Rogers
?? and Jianbo Zhang ?? also find that in an environment with private signals about a state
of the world, when actions and timing of actions of agents are made endogenous, the agent
with the most precise signals acts first and all other agents mimic his actions immediately.
Thus there is an information cascade (with possible initial delay). The information structure
of their models differs from ours. Apart from there being no imperfect monitoring in their
model, the main difference is that there is no competition, in the papers of Jianbo Zhang
and Brian Rogers, among agents entering at the same time . However, even with different
setups and information structures, the results have a qualitative resemblance.

6 Citations in a Random Social Network

In this section, we consider how the citation network interacts with the structure of social
acquaintance. One obvious way in which social connections influence citations is that it is
easier to learn of the existence of a paper through one’s colleagues and friends. This might
account for the frequency with which some colleagues cite each other, though there might
be other issues involved there as well.
Whilst this is certainly less important now than it was in the past because of the easy

accessibility of new work on the internet, it still plays a major role in pointing us to papers
that reduce our search costs. Of course, another way would be to consider people who write
in a given field and check whether a particular person (a “star”) has worked on the specific
topic, even if he or she is not an acquaintance. We shall briefly consider a "star" network
later.
Here the graph of social links is assumed to be random. The agent has an existing social

network in which each of the N − 1 possible links is open with probability q and edges are
open and closed independently of each other. The probability that the agent is completely
isolated is therefore (1− q)N−1 = 1− ρ, say.17. The process then continues as follows:

1. Each period, one randomly chosen agent enters. (That is, any given agent has a
probability 1

N
of entering at any position in the order.)

2. Agent k upon entering realises his type pk which is the probability that k is useful.
One of the social links to the N − 1 other agents is then activated randomly. Since
each link is just as likely to be activated and just as likely to be open as any other, the
probability that any given other agent will be chosen is 1

N−1 .

17Recall that in Price’s work, 1% of the entering agents were completely isolated.
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3. Agent k observes the agent he is linked to has or has not entered; if agent k is linked to
agent j and agent j has cited some j0, then k observes this and any citations j might
have received.

4. Agent k then decides whether or not to investigate j or j0, just as in the basic model,
if j has entered.

5. If investigation of j is successful, a citation for j results. Agents get their payoffs just
as in the basic model and the game reaches the next period.

There are therefore four possible states of information for k.He is completely isolated (h0),
linked to j who has not entered (hne), linked to j who has entered and has not cited anyone
(hj) or has cited j0 (hjj0). The number of citations that j has received is also observable and
is denoted by Cj. A strategy for k would specify whether to investigate and whether to cite
if found useful for each history. Note that k can infer something about his relative position
in the order of entry based on the state of information for the last three states (hne shifts
the probability attached to possible entry times towards earlier periods and hj and hjj0 with
Cj > 1 towards later ones). The later the entry the lower the possible future benefits from
being cited, so the incentive to hold out is lowest in the last two types of states.
Since we have two kinds of networks here, let us denote the two by g and gc. The social

network is denoted by g and the directed graph of citations is gc. Note that g is formed
randomly while gc is formed by strategic decisions, which depend on the subgraph of g at
each period. We say ij ∈ g, if they are linked socially and ij ∈ gc if i has cited j.18

Now we analyze i0s decision to investigate or not.
Suppose agent k enters at period k and the network at that time is given by the pair

(g, gkc ).Suppose, the number of agents who have entered is k − 1. Agent i0s type is given by
pi which is distributed with cdf F (.) with E(pi) = p0.

19 We consider the different cases that
might arise. Let W k(Cj) denote the expected future payoff of the kth − period entrant, as
calculated by the entrant (conditional on his being useful for sure) when his (social network)
neighbour j has Cj citations,
Case I (occurs with probability 1− ρ): i remains isolated. In this case, i has no option

but to write on his own.
Case II: Agent k is connected to j, s.t. Cj = 1 and @c, s.t.jc ∈ gtc (i.e. j has not cited

anyone). Here, k has two options:
Investigate j and get p0v − c+ (1− p0)piW

k
0

Not Investigate and get piW k
0 where W

k
0 =W k(Cj = 1)

18Note that gc is a directed graph and hence, ij ∈ gc is not the same as ji ∈ gc.
19The distribution is absolutely continuous.
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So, i will investigate if p0v − c+ (1− p0)piW
k
0 ≥ piW

k
0 or, pi ≤

v− c
p0

Wk
0

The probability that the new entrant investigates is denoted by r = F (
v− c

p0

Wk
0
)

So, the probability that j (with Cj = 1) gets a citation is ρ
N−1F (

v− c
p0

Wk
0
)pj

Case III: Agent i connects to j with Cj > 1 and/or ∃c s.t. jc ∈ gtc.
First note that, if ∃c s.t. jc ∈ gtc, then c must be the earlier entrant. So, the first agentbj connecting to j observes c with Cc > 1 and Cj = 1. Agent bj0s decision is to
i) Investigate j : p0v − c+ (1− p0)pbjW τ

0

ii) Investigate c : v − c

iii) Not Investigate: pbjWbj
0

So, if bj does investigate, he will investigate agent c and not j.( To see this, note that if
p0v − c + (1 − p0)pbjWbj

0 ≥ pbjWbj
0 , i.e.v − c

p0
> pbjWbj

0 , then it is true that v − c > v − c
p0

>

pbjWbj
0 ). This implies that Cj > 1 and ∃k s.t. jc ∈ gtc cannot hold together in equilibrium.

Either Cj > 1 or ∃c s.t. jc ∈ gtc but not both. If jc ∈ gtc for some c, then the probability of
j getting a citation = 0.20 We look at the case where Cj > 1. In such a situation, the new
entrant i has two options again with the payoffs as follows:.

Investigate j: v − c
Not Investigate : piW

k(Cj > 1)
So, the new entrant will investigate if pi ≤ v−c

Wk(Cj>1)
, which implies that the probability

of getting another citation for j, given Cj > 1 is

Pr(Citationj | k) =
ρ

N − 1F (
v − c

W k(Cj > 1)
) (A)

Note that W k is k0s future payoff if he does not investigate any agent. Agent k cannot
observe the whole graph (g, gc) but only the one he is connected to and anyone this person
has cited. So, k has some expectation of the period of his entry, which determines W k.
Observation of a higher Cj implies that more people have entered and hence k has entered
relatively late. This in turn implies that the W k is low. Note that Player k+ τ , τ ≥ 1,if she
links to k and no one else has cited k, will be in information state hj and will not assign a
high probability to being late in the game. Therefore k + τ will cite with a relatively low
probability independent of the value of Cj. Therefore Cj does not affect the probability of
citation for k but does affect the expected number of citations, conditional on being cited.

20Of course this could occur off the equilibrium path. In this case, the new entrant believes that all those
who have cited J made mistakes and cites the person j has cited. (This is an assumption on beliefs but a
natural one.)
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So, a higher Cj implies a lower W k(Cj).
21 From expression A, we see that this implies a

higher r = F ( v−c
Wk(Cj)

) and a higher Pr(Citationj).
However, this is the probability of citation if k links directly with j. If k links to someone

who has linked to j, the probability k cites j is independent of Cj and is lower. Note
therefore that the probability of j being cited with Cj > 1 earlier citations is proportional
to CjF (.) < Cj. We write this as a proposition.

Proposition 8 Suppose Cj(t) denotes the number of citations j has received at time t and
Cj(t) > 1. Then

Cj(t+ 1) = Cj(t) + 1 with probability ϕ(Cj, t)

= Cj(t) otherwise.

Here
ϕ(Cj, t) =

ρ

N − 1[F (
v − c

W t(Cj > 1)
) + (Cj − 1)F (

v − c

W t
0

)]

Proof. See preceding discussion.

Remark 4 The probability of an additional citation is therefore increasing in the number
of citations as in the preferential attachment models, but unlike these models is not directly
proportional to the number of existing citations. The probability has two factors, one arising
from the social network and the other from the strategic/competitive motives of the players.
The sublinear nature of the dynamic does not give a power law (as Chung et al have shown).

We have earlier referred to a star network. Suppose the network consists of “stars”, who
might be connected to each other, and “planets”, who revolve around particular stars. In this
case, if a star enters early, his paper will be likely to receive wide dissemination. However,
an idea generated from a planet can only diffuse if a star decides to cite it. This can only
happen if a star enters relatively late, so has no incentive to seek her own citations. Thus
ideas generated from the peripheries take an inefficiently long period of time to diffuse.
We now give an example where the strategic aspect of network formation is absent, so as

to give a flavour of the effect of the acquaintance network on citations.

Example 4 Let N=10. Say, 1 and 2 entered sequentially but no social link was formed. So,
C1 = C2 = 1 at period 3. 3 enters and forms a link with 2, say. Suppose 3 chooses NI. So, after
period 3 the network is: <1(1) 2(1)—3(1) >

21Player i has a link with a player who has cited Player j who has Cj citations. Therefore Player i has
been preceded by at least Cj + 1 agents.
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Figure 4: Co-evolution of citation and social networks

The numbers in the parentheses are the citations for each agent. Now 4 enters. Suppose he links
to 2 and investigates 2. Also suppose it is useful. Then the updated network is <1(1) 2(2)–3(1)
4(1) >.Now say 5 links to 1 and investigates and cites 1. 6 and 7 link to 5 and he can observe
C1 > 1 and hence cites 1 again. Hence at the end of period 7, 1 has 3 citations and is linked to
5,6,7 in g or gc. Say, 8,9, and 10 all link to 2 or 4. In either case they can observe C2 > 1 and
hence would cite 2. So, the final graph < gc(g) > we end up with looks like figure 4. We could
have the same gc with multiple g’s. Figure 4 includes only one of the possible g which is consistent
with the gc.

7 Private information and heterogeneous quality

In this subsection we discuss heterogeneity in the qualities of papers with private information.
We explore whether greater heterogeneity in the quality of papers will speed up or delay the
revelation of information about quality. An individual’s paper might be of quality 0 (not
useful for related papers) with probability 1 − pi;useful with a value v, with probability
pi(1 − q), or with value v, with probability piq.We still maintain that h = 1, l = 0 i.e.
once useful(non-useful), a paper is always useful(non-useful).The quantity pi is, as in the
preceding section, private information for Player i and is drawn independently for each i
from a commonly known, absolutely continuous distribution on [0,1], with E(pi) = p0 . We
assume

i) v> w
ii)v = qv + (1− q)v
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iii)p0v > c (from the basic model)
Therefore the prior probability of a paper yielding v is p0q and that of it yielding v is

p0(1− q); while the probability of a paper not being useful or of value 0 is (1− p0) as before.
The difference comes from the fact that if both v and v types are cited if used, a citation does
not partition the two useful types though it does separate them from a non-useful paper. So,
there is partial information revelation, i.e. citations are not perfect signals any more. In this
setup, an agent might choose to incur cost c and investigate a paper if the ex-ante net payoff
from doing so is high enough. After reading, the information is revealed and depending on
the quality, he might or might not cite that paper. We consider N entrants in a fixed order.
We now introduce some notation prior to outlining the result. Let rk be the probability

that Player k will investigate one of his predecessors. ( For k = N, the probability is 1). We
consider a k < N , again such that there have been no citations upto k0s entry. If Player k
does not investigate or investigates and does not cite, her expected value to others will be
updated, since the players with higher values of pk will be more likely not to investigate. (If
pk = 1, the player knows his paper is useful and therefore has a high expected future payoff
from being cited). Suppose her probability of being investigated is rk+122 and her expected
payoff, if cited is Wk+1. Note that if Player k is not found useful, she is not cited, but if
she is found useful, she is cited with probability r0k+1 if her value is v and with probability
r00k+1 if her value is v, where r

0
k+1 ≥ r

00
k+1.If cited once, her expected value to future entrants

is at least qv + (1 − q)v, which is always greater than the expected value of someone who
has never been cited. However, if she is cited again, her expected future value increases and
if she is not cited it decreases. This changes the investigation decision for future entrants.
This is all encapsulated in Wk+1. Thus rk,Wk are well-defined (by backward induction) for
all k.

Proposition 9 Suppose (v−v)p0q > c, where c is the cost of investigation. Then, for every
k, given no citations before k, there will exist cutoff values, α1 > α2 > α3

23, such that Player
k will not cite if pk ≥ α1, will not investigate if pk ≥ α2, will investigate and cite only v if
pk�[α3, α2] and will investigate and cite both v, v if pk�[0, α3].

Proof. Given investigation a player with private information pk will not cite v, if pkrk+1δWk+1 ≥
v.This gives α1 = v

rk+1δWk+1
. Clearly, someone who is not going to cite even v would never

investigate. Similarly, if pk�[
v

rk+1δWk+1
, v
rk+1δWk+1

], Player k would cite only v.For lower values
of pk, she would cite both positive values. Let

v
rk+1δWk+1

= α3.

22Once again, the probability of citation will be shown to be positive in every period, so lemma 1 will in
fact ensure that only the most recent paper is investigated, in the absence of a citation.
23These cutoffs depend on k; this dependence is suppressed for notational convenience.
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Consider now the player who would, if she investigates and finds a positive value, cite only
v. Her choice would be not to investigate if pkrk+1δWk+1 ≥ p0qv+(1−p0q)pkrk+1δWk+1−c,or
, pk ≥ v

rk+1δWk+1
− c

rk+1δWk+1p0q
= α2 < α1.For α2 > α3,(v − v)p0q > c must be satisfied (and

conversely). We now check the investigation decision for a player who would cite both v and
v, if he investigates. Such a person would not investigate if pk ≥ qv+(1−q)v

rk+1δWk+1
− c

rk+1δWk+1p0
.

We check the difference between the right-hand side of the last expression and α3.This
difference is qv+(1−q)v

rk+1δWk+1
− c

rk+1δWk+1p0
− v

rk+1δWk+1

= 1
p0rk+1δWk+1

(p0qv + p0v − p0qv − p0v − c)

= 1
p0rk+1δWk+1

(p0q(v − v)− c) > 0.

This implies that the player with pk ≤ α3 would always investigate, because as pk rises,
she would shift first to citing only v (after investigating) before choosing not to investigate.

Note that, by lemma 1, in equilibrium, Player k, if he cites, will cite k− 1 if no previous
papers have citations other than self-citations. A paper that has received a citation will be
chosen by any future entrant who wishes to investigate (and the cutoffs in the proposition
will change to reflect the new expected value, obtained by Bayesian updating). However,
someone investigating who cites only v papers might discover the cited paper is v and not
cite it. Every non-citation will decrease the expected value of the paper and it is possible
this will go below the prior, in which case the most recent paper will again start to be
investigated. Thus it is possible that several papers will obtain citations and then die out
and be replaced by others. As a cited paper adds citations, it will, of course, become more
popular. As it accumulates non-citations, the entrants who would wish to cite only v papers
might switch more to not investigate, so the information content of more non-citations would
diminish. This also depends of course on how close to the end of the game the field is, because
every type of agent has an incentive to investigate at the end of the game. We can therefore
conclude that, with heterogeneous quality, (i) a higher quality paper has a higher probability
of being cited and a higher expected number of citations; (ii) with positive probability a lower
quality paper will be cited first and obtain citations, while a higher quality paper from a
later entrant “dies”; (iii) some papers might enjoy a vogue and then be replaced by other
more recent ones.

8 Efficiency

This paper is an attempt to model observed patterns of citation as a result of strategic choice
by rational agents and its implication on diffusion of knowledge. The irreducible multiplicity
of equilibria makes determinate predictions difficult. But we can rank these equilibria with
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respect to a certain notion of ex-ante efficiency. Efficiency here relates to the idea that
the earlier the investigations start, the earlier the information about the quality of paper
is revealed, probabilistically. Hence potentially, the benefits of a good paper are available
earlier. Consider a social planner who wants to maximise the sum of expected payoffs of
all N agents. Say, the planner specifes that in states with no citations, agents 1,2,...i − 1
would not investigate and all agents i, i+ 1, ...N investigate. Also, whenever a paper gets a
citation, it gets cited by all entrants thereafter. This allocation of decisions entails a payoff
of v + w − c for each citation (v − c to the one citing, w to the one cited). If agent i starts
investigating, agents 1,2,...i − 1 get no benefit nor do they incur any cost. So, the sum of
expected payoffs of N agents is

U = Pr(i0s investigation is a success)[(v + w)(N − i− 1)]
+Pr(i0s investigation failure)Pr(i+ 10s investigation success)[(v + w)(N − i− 2)]
+.......

+Pr(investigations of i, i+ 1, ..N − 1 failures)Pr(N 0s investigationn success)[v + w]

−(N − i− 1)c

The expression is strictly decreasing in i, for small c (since the last term involves the
term +ic). So, a social planner would set i = 2 to maximize U. Hence we see that earlier
investigations entail higher aggregate payoffs. The equilibrium in Proposition 3 , therefore,
is efficient, both ex-ante and ex-post. In fact, when citations are perfect signals, as in the
basic model, there is no difference between ex-ante and ex-post efficiency.
With multiple qualities of papers, the ex-ante probability that the better paper is cited

and known is higher than the probability of the worse paper being known.24 Note that
existence of equilibria mentioned in section 4( with agent i choosing to cite both types and
i+1 choosing to cite only the high type) implies that ex-post, it might be the case that the
low-quality paper gets citations before a high quality one and potentially better papers do
not get known. So, there are equilibria that are ex-post inefficient.

9 Conclusion

We have looked at a specific stylised model on the effect of rivalry on the diffusion of useful
ideas. Whilst we have focused on academic citations, the model can be interpreted without

24Compare this with the David-Simkin-Roychowdhury explanation, where there is no expected difference
in quality between highly cited and less cited papers, a somewhat counter-intuitive conclusion that would
probably have some academic administrators worried.
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too much difficulty as one of firms engaged in R&D deciding whether to use existing patents
or to work around them.
Our basic findings are: (i) In a complete information model, the rule by which a new

entrant chooses to cite the work of earlier entrants among whom she is indifferent determines
the equilibrium. The most efficient case for dissemination of ideas is the rule by which the
new entrant chooses randomly. The structure of the equilibrium often, but not always, has
a cutoff entrant such that all who enter earlier decide not to investigate earlier work and
those who enter later do. (ii) WIth private information and entrants deciding when to enter,
the equilibrium structure is monotonic in that players who believe their own ideas to be
relatively good enter early and there is then a cascade, similar to information cascades in the
literature. (iii) With citations superimposed on a simple social network (so that individuals
find out about other earlier work by direct acquaintance or simple word of mouth), the
dynamic of citations is shown to follow sublinear preferential attachment. (iv) In no case, do
we get a “power law”. We get either a monopoly or, with sublinear preferential attachment,
something involving the product of a power law with some other factor.
Our findings can also be related to the literature on diffusion of technology and social

norms, which point out that "local externalities" like conformity can be a possible obstacle
to the spread of optimal technology. Papers by Munshi [19] and Banerjee-Duflo [3] deal
with specific externalities. In our model, it is the rivalry or competition among agents that
becomes the hindrance to speedy diffusion. This is in contrast to existing literature where
agents are usually assumed to be non-strategic. (Diffusion in the case of partially rational
players who do not compete with each other is addressed in a different context by [1] and
for non-rational players by [7].)
We can place our work in the network literature (citations being directed links), but

the flavour is different from many papers in that literature, since we do not rely solely on
exogenous randomness or on built-in network externalities. In the model without private
information, our result might be considered too extreme in that there is one randomly chosen
centre in a star network. In order to match the data, we need to include other factors,
which contribute to the decision of citation. In our paper, private information about quality
contributes substantially in matching model results with the qualitative features of the data.
Additional considerations arising from repeated interactions and asymmetries in initial social
connectedness among agents might induce completely different strategic considerations. For
example, the presence of cliques or clusters in citation networks suggest that in a repeated
game framework, (some) citations might occur in the hope of getting favours returned. In
fact, it is most likely that both the competition (discussed in our paper) and co-operation
effects work together to determine actual citation networks.

32



References

[1] Bala, V. and Goyal, S.(1998), "Learning fromNeighbours", Review of Economic Studies,
65, 595-622.

[2] Baliga, Sandeep and Sjostrom, J. Tomas (2001), “Optimal Design of Peer Review and
Self-Assessment Schemes”, RAND Journal of Economics, 32, 1, 27-51.

[3] Banerjee, A.V. and Duflo.E(2004),Growth Theory through the Lens of Development Eco-
nomics , mimeo MIT, Cambridge, Ma.

[4] Barabasi, Albert-Laszlo and Albert Reka (1999) : "Emergence of Scaling in Random
Networks" Science, 286.

[5] Bollobas, Bela and Riordan,Oliver (2003) : "Mathematical Results on Scale-Free Ran-
dom Graphs", Handbook of Graphs and Networks, Stefan Bornholdt and Heinz Georg
Schuster (Ed.), Wiley-VCH, 1-34

[6] Boyd, Robert and Richerson, Peter.J.(2001) "Norms and Bounded Rationality" in
Bounded Rationality: The Adaptive Toolbox, MIT Press,Cambridge.

[7] Chatterjee, Kalyan and Susan Hong Xu (2004), “Technology Diffusion in Learning from
Neighbours”, Adv.App.Probability, 36, 2, 355-376.

[8] Chung, Fan, Shirin Handjani and Doug Jungreis (2003) “Generalizations of Polya’s Urn
Problem”, Annals of Combinatorics, 7, 141-153.

[9] David, Paul (1994), “Positive Feedbacks and Research Productivity in Science; Reopen-
ing Another Black Box”, in O. Granstrand edited Economics of Technology, Elsevier
Science, pp. 65-89

[10] David, Paul (2002): " Cooperation, Creativity and Closure in Scientific Research Net-
works"; mimeo, Stanford University.

[11] Durlauf, Steven N. and Young, H.Peyton, eds(2001) Social Dynamics, MIT
Press,Cambridge, Ma.

[12] Durrett, Rick T. (1988) : Lecture Notes on Particle Systems and Percolation,
Wadsworth-Brooks Cole.

[13] Fudenberg, Drew and Jean Tirole, (1991) Game Theory, MIT Press 1991.

33



[14] Giles, C.Lee and Councill,Isaac G. (2004): "Who gets Acknowledged? Measuring Scien-
tific Contribution through Automatic Acknowledgement Indexing", Proceedings of the
National Academy of Sciences, 101, no. 51, 17599-17604.

[15] Jackson, Matthew O. (2004): "Economics of Social Networks", mimeo, Stanford Uni-
versity.

[16] Jackson, Matthew O. and Rogers, B.(2004), "Search in the formation of large networks",
mimeo, Caltech and Stanford Universities.

[17] Merton, Robert K. (1968), “The ‘Matthew’ Effect in Science”, Science, 159,(3810),
56-63, January 5.

[18] Merton, Robert K. (1988), “The ‘Matthew’ Effect in Science, 2: Cumulative Advantage
and the Symbolism of Intellectual Property”, ISIS, 79, 606-623.

[19] Munshi, K., (2004), " Social Learning in a Heterogeneous Population: Technology Dif-
fusion in the Indian Green Revolution", Journal of Development Economics, 73 (1),
185-215.

[20] Price. D.J.S(1965): "Networks of Scientific Papers" Science 149, 501-515.

[21] Redner,S. (1998) : "How Popular is Your Paper? An Empirical study of the Citation
Distribution", Eur. Phys. J. B4 (1998), 131—134.

[22] Rogers, Brian, W,(2005), "The Timing of Social Learning" mimeo,Caltech.

[23] Simkin,Mikhail V. and Roychowdhury,Vwani P.(2005) " A Mathematical Theory of
Citing", mimeo, UCLA.

[24] Simon, H.A.(1955): "On a Class of Skew Distribution Functions" Biometrika, Vol
42(3/4), pg 425-440.

[25] Small, Henry (2004), “On the Shoulders of Robert Merton: Towards a Normative The-
ory of Citation”, Scientometrics, 60, 1, 71-79

[26] Zhang, Jianbo, (1997). "Strategic Delay and the Onset of Investment Cascades" RAND
Journal of Economics, 28, 188-205

34



Appendix 1 Proofs of some propositions from Section
3.1
Behavioural Assumption 1: Any new entrant, if indifferent between r agents, inves-

tigates the earliest among them.
Proposition 1: In any equilibrium string, ∃K∗ ≤ N−4

2
s.t.∀k ≤ K∗,the k th entry is NI

and ∀k > K∗, the k th entry is I. The exact value of K ∗ depends on the parameter values
v, δ, p0, w.
Proof. We will prove this in three steps. First, let us number the agents from the end,i.e.
the last agent is number 1. Let, i be the position(from the end) of the first entry of NI in a
string i.e. no agent j < i chooses NI. Also, let there be kI entries of I and kNI entries of NI
after i ⇒ kI + kNI = N − i.
Step 1: We show that number of entries NI ≤ number of I’s in an equilibrium string.

Note that kI agents among N − i are investigating. Imposition of A1 restricts us to pure
strategies⇒ kI agents among N − i are investigated. ⇒ kNI agents are not investigated.
Now consider the decision of i. He knows that kNI agents are not yet investigated. Given
A1, this implies that the next kNI agents will not choose to read i. He can only hope to
get investigated by the agent numbered (i − 1 − kNI), that too, conditional on the fact
that all investigations done by agents i − 1 to i − kNI are failures. Now by definition of
i, he is the first( from end) to choose NI. i.e. agent i − 1, i − 2, ..., 2, 1 all chose I. The
no-deviation condition for i implies that v must be lower than his expected future payoff(A).
Expected future payoff from NI =

A = (1− p0)
kNIp0(δ

kNI+1w + δkNI+2w + ...+ δi−1w) (1’)

Payoff from deviating to I =
p0v + (1− p0)A − c (2’)

No profitable deviation from NI requires

v − c

p0
< A = (1− p0)

kNIp0(δ
kNI+1w + δkNI+2w + ...+ δi−1w) (3’)

The first term in A is for the condition that investigation by agents i − 1, ...1 − kNI are
failures so that i is investigated, which happens with probability (1 − p0)

kNI . Recall that
the quantity p0 is the probability that i is found useful. Also, δkNI (δw + .... + δi−1−kNIw)
is the discounted sum of payoffs if found useful. Now, note that if there are fewer than
kNI +1 agents following i, then i is never investigated and hence i deviates from NI. But by
definition i is the first to choose NI in equilibrium. This implies

i− 1 ≥ kNI + 1 (4’)
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Total number of agents = N = (N− i)+ i = (kI+kNI)+1+(i−1) = (kNI+1)+(kI+ i−1).
Therefore the number of agents choosing NI= kNI before i and i himself = kNI +1 and the
number of agents choosing I=kI + i− 1 ≥ i− 1 ≥ kNI + 1 (by equation 4’). Hence in any
equilibrium string, No. of I entries ≥ No. of NI entries.
Step 2: Now, we will prove that in fact, i ≥ kNI +4. The total number of NI= kNI +1 =

k, say.The total number of I= N − k of which k are at the end. From equation (4’) , i ≥
kNI + 2 = k + 1. Let i = k + 1. He hopes to get investigated only by the last agent . His
expected future payoff from NI is (1 − p0)

k−1p0δ
kw < w < v − c

p0
i.e. i cannot choose NI

which implies the k + 1th entry in the equilibrium string is a I .
Now, let i = k + 2. The next k − 1 out of k + 1 agents would not choose i due to A1.

They would choose to investigate some agent j > i.Therefore i can get investigated by the
second last agent. Hence, his expected payoff is (1− p0)

k−1p0δ
kw (1 + δ) = A0.For i = k+2,

we need A0 > v − c
p0
, or (1− p0)

k−1p0δ
kw (1 + δ) > v − c

p0
> w. So, the necessary condition

for such a case to exist is (1 − p0)
k−1p0δ

kw (1 + δ) > w or (1 − p0)
k−1p0δ

k (1 + δ) > 1 or
(1 − p0)

k−1p0 >
1

δk(1+δ)
. For this to be satisfied, we need (1 − p0)

k−1p0 ≥ 1
2
. To see the last

condition note that 1
δk(1+δ)

is decreasing in δ and reaches a minimum at 1/2 whereas the

maximum value of (1 − p0)
k−1p0 <

1
4
. Therefore v − c

p0
< A0 is not possible ⇒ i > k + 2.

Now, we check the same condition for i = k + 3 and i = k + 4. The necessary conditions for
these to happen are (1− p0)

k−1p0 ≥ 1
3
and (1− p0)

k−1p0 ≥ 1
4
respectively, neither of which

is possible . Hence, i ≥ k + 5.
Step 3: Suppose there exists an equilibrium string with gaps and with k agents out of

N choosing NI. Define i as before ,i.e. the first agent (from the end) choosing NI. Let the
agent i+1 choose I. Given s−i, the condition for no-deviation for i from NI is

v − c

p0
< (1− p0)

k−1p0δ
kw(1 + δ + ...+ δi−k−1).

Similarly given s−(i+1) the no-deviation condition for i+ 1 is

v − c

p0
≥ (1− p0)

k−2p0δ
kw(1 + δ + ...+ δi−k)

So the necessary condition for the two to hold simultaneously is

(1− p0)
k−2p0δ

kw(1 + δ + ...+ δi−k) < (1− p0)
k−1p0δ

kw(1 + δ + ...+ δi−k−1)

or
(1 + δ + ...+ δi−k) < (1− p0)(1 + δ + ...+ δi−k−1) (5’)
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But
(1− p0)(1 + δ + ...+ δi−k−1) < (1 + δ + ...+ δi−k−1) < (1 + δ + ...+ δi−k)

So, (5’) cannot hold. So, given the definition of i, i + 1 must also choose NI. We can
apply the same logic to any j > i choosing I and will arrive at a contradiction. Reversing
the numbering of agents, we conclude that there cannot be any gaps i.e. ∃K∗ such that
∀j ≤ K∗ choose NI and ∀j > K∗ choose I. So, the number of agents choosing NI is K∗ and
choosing I is N − K∗. We also know that at least the last K∗ + 4 agents have to choose
I. So, N − K∗ ≥ K∗ + 4 ⇒ K∗ ≤ N−4

2
. The exact value of K∗ is given by the following

condition:

(1−p0)K
∗
p0δ

K∗w(1+δ+ ...+δN−2K
∗−1) ≤ v− c

p0
< (1−p0)K

∗ −1p0δ
K∗w(1+δ+ ...+δN−2K

∗
)

(6’)

Behavioural Assumption 2: Any new entrant, if indifferent between r agents, inves-
tigates the most recent among them.
Proposition 2: In any equilibrium string, ∃K, s.t.∀i ≤ K,∀j ≤ K−1, i : NI ⇒ i+1 : I

and j : I ⇒ j + 1 : NI and ∀i > K, i : I .The value of K depends on parameter values
and, for fixed w, p0,δ, is decreasing in v.
Proof. First note that there cannot be 2 or more consecutive NI in any equilibrium string.
Suppose not. Let i and i+1 both choose NI, with i+2 choosing I. Then i+2 is indifferent
between investigating i and i+ 1. By BA2, he chooses i+ 1. This implies that i has future
payoff of zero no matter what he does. Hence, i will deviate from NI.
Next we will show that @ 2 consecutive I entries preceded and followed by NI in the

array of the equilibrium string, i.e. @ a sequence i, i + 1, i + 2, i + 3 such that i and i + 3
choose NI and i+1, i+2 choose I. By way of contradiction, suppose there is. Since i, i+3
chooses NI, by the first argument, i− 1 and i+4 choose I in equilibrium. We will now put
down the no-deviation conditions for each of the agents i to i+ 3.

i→ NI ⇒ v − c
p0

< A1 = p0w(δ + δ2 + ...+ δN−i)

i+ 1→ I ⇒ v − c
p0
≥ B = p0w(δ + δ2 + ...+ δN−i−1)

i+ 2→ I ⇒ v − c
p0
≥ 0

i+ 3→ NI ⇒ v − c
p0

< A3 = p0w(δ + δ2 + ...+ δN−i−3)
Note that A3 < A1. Hence the condition required is B ≤ v − c

p0
≤ A3. which is im-

possible since B > A3. We can conclude that in equilibrium if ∃ some i, s.t. i, i + 1
choose I,then s∗k = I ∀k > i + 1. Otherwise, the string has to be characterised by alter-
nating patterns ie. if i → NI, then i + 1 → I and if any j → I, then j + 1 → NI.
More generally, ∃K such that ∀i < K,∀j < K − 1, i → NI ⇒ i + 1 → I and j →
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I ⇒ j → NI and ∀i ≥ K, i → I. The no-deviation condition for each agent is as fol-
lows: i→ NI ⇒ v− c

p0
< A1 = p0w(δ+δ

2+

...+δN−i)
1→ I ⇒ v− c

p0
≥ B = 0

i+2→ NI ⇒ v− c
p0

< A2 = p0w(δ+δ
2+...+δN−i−2)

3→ I ⇒ v− c
p0
≥ 0

4 → NI ⇒ v − c
p0

< A4 = p0w(δ + δ2 + ... + δN−i−4) ...and so on. The lower v, more of
these conditions are satisfied i.e. v− c

p0
< Ay is true for higher values of y(since the sequence

A1,A2... is decreasing). Hence the alternating pattern can go on for longer and K is higher.

Behavioural Assumption 3: Any new entrant, if indifferent between r agents, inves-
tigates them with equal probability 1

r
.

Proposition 3: In any equilibrium string, ∃ eK, s.t.∀k < eK the k th entry is NI and
∀k ≥ eK, the k th entry is I . In fact, eK = 2.
Proof. First note that if any two entries i, i + 1 are I, with i − 1 being NI, then only i
mixes. Player i + 1 uses pure strategy of Ii, since the belief about all other past entrants’
usefulness is less than p0( by Lemma 1). Now, we characterise the pattern in equilibrium.
Let the ith1 , i

th
2 , ....i

th
k , i

th
k+1, i

th
k+2, ...N

th agents be the ones choosing I in equilibrium; i1 <
i2 < .. < ik. Hence by definition, i1 is the first one to choose I and everyone after agent ik
investigates some agent. We know that the last two agents would always choose I . Hence
the agent ik can be N-1 or smaller. Here, there are i1−1 agents before i1 who have not been
investigated.Agent i1 is indifferent between them and reads each of their papers with equal
probability, 1

i1−1 . Similarly, i2 investigates each of i1, i1+1, ..., i2−1 with probability
1

i2−i1 and
so on. Given this equilibrium, we can derive the updated beliefs of each agent whenever the
state of no citations is reached and hence calculate the no-deviation (unilateral) condition
for each agent.
1 : 0 < 1

i1−1p0wδ
i1−1(1 + δ + δ2 + ...δN−i1)

2 : v − c
p0

< 1
i1−1p0wδ

i1−2(1 + δ + δ2 + ...δN−i1)
.
.
i1 − 1 : v − c

p0
< 1

i1−1p0wδ(1 + δ + δ2 + ...δN−i1)

i1 : v − c
p0
≥ 1

i2−i1p0wδ
i2−i1(1 + δ + δ2 + ...+ δN−i2)

i1 + 1 : v − c
p0

< 1
i2−i1p0wδ

i2−i1−1(1 + δ + δ2 + ...+ δN−i2)
.
.
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.
ik − 1 : v − c

p0
< 1

ik−ik−1p0wδ(1 + δ + ...δN−ik)

ik : v − c
p0
≥ p0wδ(1 + δ + ...+ δN−ik−1)

ik + 1 : v − c
p0
≥ p0wδ(1 + δ + ...+ δN−ik−2)

.

.
N : v > 0
Take the 2 equations for ik − 1 and ik.

p0wδ(1 + δ + ...+ δN−ik−1) ≤ v − c

p0
<

1

ik − ik−1
p0wδ(1 + δ + ...δN−ik)

A necessary condition for this to hold is

p0wδ(1 + δ + ...+ δN−ik−1) <
1

ik − ik−1
p0wδ(1 + δ + ...δN−ik)

or, (1 + δ + ...+ δN−ik−1) <
1

ik − ik−1
(1 + δ + ...δN−ik)

Call the LHS, A. Then the previous expressions can be rewritten as:

A(ik − ik−1) < A+ δN−ik

A(ik − ik−1 − 1) < δN−ik

But A > δN−ik . So this can hold only if

ik − ik−1 = 1

,which again implies that there is no gap between ik and ik−1.
25 Hence everyone after agent

ik−1 investigates.
Similarly we can write out the new set of conditions where agents i1, i2, ..., ik−2,ik−1, ik−1+

1, ik−1 + 2, ..., N choose I and compare the conditions for agents ik−1 and ik−2. We would
arrive at a contradiction if ik−1 − ik−2 > 1. Hence in any equilibrium string there cannot be
gaps. Such a string must be of the form [NI,NI,NI.....NI, I, I, I....I ], where the I starts
at period eK.
Now we can go on further and find the value of eK. We know that all the agents beforeeK were not investigated. Hence eK investigates each of them with probability 1eK−1 .If his

25Note the difference between ik−1 and ik − 1.
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investigation is not useful, eK + 1 investigates eK. The no-deviation conditions for agentseK − 1 and eK are

p0δw(1 + δ + δ2 + ...+ δN−
eK−1) ≤ v − c

p0
<

1eK − 1p0δw(1 + δ + δ2 + ...+ δN−
eK)

The necessary condition again is

(1 + δ + δ2 + ...+ δN−
eK−1) < 1eK − 1(1 + δ + δ2 + ...+ δN−

eK)

or, eK − 1 < 1 + δ + δ2 + ...+ δN−
eK

1 + δ + δ2 + ...+ δN−
eK−1 = 1 + δN−

eK
1 + δ + δ2 + ...+ δN−

eK−1 < 2
i.e. eK < 3

Since the first agent has no one to investigate his only choice is NI. So, eK < 3 implies
that investigation would start from agent 2 and no later.
Proposition 4: For any given set of parameters, (v, p0, w, δ), eK ≤ K∗ < K.

Proof. From Proposition 3, we know that eK = 2. By way of contradiction, we assume
K∗ ≥ K and show that set of values of the parameters that satisfy this inequality is empty.

>From Proposition 1, we know that given a K∗, the parameters should satisfy equation
(6’) [See Appendix].

LK∗ : = (1− p0)
K∗p0δ

K∗w(1 + δ + ...+ δN−2K
∗−1) (3)

≤ v − c

p0
< (1− p0)

K∗−1p0δ
K∗w(1 + δ + ...+ δN−2K

∗
) = HK∗.

>From Proposition 2, given a K, the conditions to be satisfied are

LK := p0δw(1 + δ + ...+ δN−2−K) ≤ v − c

p0
< p0δw(1 + δ + ....+ δN−1−K) = HK (4)

Now fix the value of K∗ = Y ≥ 2. Therefore parameters satisfy (3).
Now, we want to check whether K can be ≥ Y.
Let K = Y.
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HK∗=Y = (1− p0)
Y −1p0δ

Yw(1 + δ + ...+ δN−2Y )

< p0δ
Yw(1 + δ + ...+ δN−2Y )

< p0δw(1 + δ + ...+ δN−2Y )

= p0δw(1 + δ + ...+ δN−Y−Y )

= p0δw(1 + δ + ...+ δN−Y−K)

≤ p0δw(1 + δ + ...+ δN−2−K) = LK |K=Y

Given the fixed value of K∗ = Y, v − c
p0

< HK∗ < LK|K=Y . Hence v − c
p0
does not lie in

the range [LK ,HK]|K=Y .
Hence given (3), K. 6= Y.
Also note that LK is decreasing in K. which implies that for values of K < Y,HK∗ < LK .

and hence (3) and (4) cannot hold together. So, given that parameter values satisfy (3),
which corresponds to a K∗, K > K∗.

Appendix 2
Proposition 8: There cannot be an equilibrium in which there exist α and α0, α <

α0(say), such that all players with pi > α0 and some with pi < α enter in period 1, while
players with α ≤ pi ≤ α0 enter in period 2 with other players entering after period 2.26

Proof. Suppose, there exists α, α0, α00, with α > α0 > α00 such that pi > α and α00 < pi < α0

enter in period 1, α0 < pi < α enter in period 2 and pi < α00 enter after period 2. We will
show that there will be a profitable deviation for some agent. Note that, after observing the
state in each period up to and including t the probabilities of usefulness for any entrant in
period s ≤ t are updated to bpst+1.
Case I : bp2t+1 < bp1t+1 In this case the agents entering after period 2 investigate and getbp1t+1v − c. But if bp2t+1 < bp1t+1 , these agents would prefer to enter at period 1 and get a less

discounted payoff
Case II: bp1t+1 = bp1t+1 In this case again, agents entering after 2 would like to enter in

period 2 and get bp12v − c at period 2 .
Case III: bp2t+1 > bp1t+1 This is the only case when agents entering after 2 would not want

to enter earlier. We consider the following three subcases:
a) All α0 ≤ pi ≤ α enter at t = 2 and Investigate: If it is optimal for these agents to do

so it implies that

26Using period 1 in the statement is without loss of generality-we can replace it by “period τ such that
there has been no entry up to τ − 1.00
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Figure 5: a b

Utility from investigating = X = bp12v − c + (1 − bp12)piE2W2 > utility from entering
at time 1 = piE1W1 = Z where EtWt is the expected future payoff from being cited after
entering in period t.27 Agents at t=1 are potentially cited by agents at 2 and later while
agents at t=2 are potentially cited by agents after 2 only. The decision is represented in
Figure 5 a and 5b. Fig. 5a shows when function X is steeper than Z and 5b is the opposite.
We see that in both cases if some α0 ≤ pi ≤ α prefers X, it must be the case that pi < α0

also prefers X. Therefore, if it is optimal for agents entering at 2 to investigate and not enter
in period 1, then agents α00 ≤ pi ≤ α0 cannot find it profitable to enter at period 1.

b) All α0 ≤ pi ≤ α enter at t = 2 and choose Not Investigate: In this case, agents at
t>2 investigate entrants in period 2 only because of their higher probability of being useful.
So, an agent entering at t=1 should deviate and wait to enter in period 2.
c) Some agents entering at t=2 investigate while some choose Not Investigate. Since later

entrants are not able to tell, given no citation, whether entrants in period 2 investigated or
not, there will be two revisions of probability. The probability of usefulness of period 1
entrants will drop to bp10 < bp1(from Lemma 1). The probability of usefulness of period 2
entrants will go up, i.e. bp20 > bp2, given that within the set of period 2 entrants the ones with
higher pi choose Not Investigate (and hence have a higher probability of not citing). Given
the candidate equilibrium strategies for other players, the choice between investigating or
not for players who have entered at t=2 entails comparison of bp12v−c+(1−bp12)piEW2, where
EW 0 is the expected payoff from entrants at t>2 investigating second period entrants, and

27The inequality could be weak for a boundary type of pi.
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Figure 6: a b

piEW1. This gives a cutoff pi such that all pi > Y ∗ will choose NI, while others choose I.
Suppose such a Y ∗ exists. So, we have α00 ≤ pi ≤ α0 enter in period 1, α0 ≤ pi ≤ Y ∗ enter
in period 2 and investigate. Thus there is an agent with pi = α0 who is indifferent between
the two. The payoff from entering in period 1 = piE1W1 ( denoted by A) and that from
entering at t=2 and investigating is bp12v− c+(1− bp12)piEW2 (B). We need to compare these
two payoffs as functions of pi. Two cases are possible: i) The slope of A is less than slope of
B ii) The slope of A is greater than that of B. The two cases are represented in Fig 6 a,b. In
(i) the two are not equal at any pi. So, this equilibrium is not possible. In (ii), they intersect
at α0(say). Then from the graph we can see that any pi > α0 will prefer A to B. i.e. will
prefer entering in period 1. So, for i, α0 < pi < Y ∗, entering in period 2 and investigating
cannot be an equilibrium strategy.
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